


Science-Physics Learning Journey

"Not only is the Universe stranger than we think, it is stranger than we can think"
– Werner Heisenberg

Physics Required Practicals	
1	Specific Heat Capacity (AT 1,5)
2	Thermal Insulation (Triple) (AT 1,5)
3	Resistance (AT 1,6,7)
4	IV Characteristics (AT 6,7)
5	Density (AT 1)
6	Light (Triple) (AT 4,8)
7	Force and Extension (AT 1,2)
8	Acceleration (AT 1,2,3)
9	Waves (AT 4)
10	Radiation and Absorption (AT 1,4)

Enquiry Processes	
W.S	Skill
A	<ul style="list-style-type: none"> How theories and models develop over time Appreciating the limitations of science and/or ethical issues Evaluating implications on evidence Evaluating risks Recognising the importance of peer review
B	<ul style="list-style-type: none"> Develop hypotheses Plan experiments Make observations or explore phenomena Use a range of apparatus Suggest improvements
C	<ul style="list-style-type: none"> Apply the cycle of collecting, presenting and analysing data Communicate rationale, methods, findings and conclusions
D	<ul style="list-style-type: none"> Develop use of scientific vocabulary Recognise importance of scientific quantities and understanding how they are determined Use mathematical notation correctly

HQT= High Quality Text

Read like a Physicist	
A brief history of time	Why does $E=mc^2$?
Big Bang	The goldilocks enigma
Smashing physics	How to build a Universe
	Reality is not what it seems
	In search of Schrodinger's cat
	We need to talk about Kelvin
	Hidden Figures
	How to teach quantum physics to your dog
	An astronaut's guide to life on Earth

Physics Careers	
Physics Teacher	Astronomer & Astrophysics
Medical Physicist	Nuclear Engineer
Energy & Renewable Energy	Aerospace & Defence
Lab Technician	Finance
Research Scientist	Software Developer
Planetary Physicist	Laser Engineer
Nanotechnologist	Sound Engineer

Curriculum Links			
	Maths		MFL
	English		IT
	P.E		RE
	Geography		Careers
	Art		PHSE
	Design Technology		Chemistry
	Music		Biology

	Forces can be a quantitative description of an interaction that causes a change in an object's motion or shape. Forces can directly affect objects or affect them from a distance.
	A system possesses energy if it has the ability to do work. Energy is a scalar quantity, abstract and cannot always be perceived and given meaning through calculation. The total amount of energy in the Universe is always the same but can be transferred from one energy store to another during an event.
	All matter is composed of tiny indivisible particles too small to see. These particles do not share the properties of the material they make up. There is nothing in the space between the particles that make up matter. The particles which make up matter are in constant motion in all physical states.